Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Front Immunol ; 14: 1153344, 2023.
Article in English | MEDLINE | ID: covidwho-2268784

ABSTRACT

Comorbidities due to inflammatory bowel disease (IBD) and anxiety are commonly acknowledged; however, their underlying basis is unclear. In the current study, we first conducted a clinical retrospective analysis to identify the enhancive incidence rate of IBD before or after the epidemic of Corona Virus Disease 2019 (COVID-19), with higher Generalized Anxiety Disorder-7 (GAD-7), as well as poorer Gastrointestinal Quality of Life Index (GIQLI). Then, the dextran sodium sulfate (DSS) and chronic unpredictable stress (CUS)-induced IBD and anxiety comorbid models were established with the correlational relations between symptoms of IBD and anxiety-related behaviors. We found dysfunctional up-regulation of a new inflammatory factor interleukin (IL)-19 in the colon of DSS/CUS treated mice. Overexpression of IL-19 in colon induced anxious phenotypes, and accelerated the anxious condition and symptoms of colitis in the DSS/CUS model by promoting the expression of inducible nitric oxide synthase (iNOS), IL-1ß, and IL-6 pro-inflammatory factors, and activating signal transducer and activator of transcription 3 (STAT3) signaling pathway in the colon. Furthermore, overexpression of IL-19 in the colon also reduced the expression levels of brain-derived neurotrophic factor (BDNF), extracellular signal-regulated kinase (ERK), and cAMP-response element binding protein (CREB) signaling pathways activity in the hippocampus. These results suggest that IL-19 was a pivotal player in DSS/CUS-induced comorbidities of colitis and anxiety with different signaling pathways for the colon and hippocampus, which provides a candidate gene to explore the pathophysiology of comorbidities due to colitis and anxiety.


Subject(s)
Anxiety , Colitis , Interleukins , Animals , Mice , Colitis/chemically induced , Colitis/immunology , Dextran Sulfate/adverse effects , Quality of Life , Retrospective Studies
2.
Phytomedicine ; 101: 154100, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1895371

ABSTRACT

BACKGROUND: A number of studies have shown that gastrointestinal manifestations co-exist with respiratory symptoms in coronavirus disease 2019 (COVID-19) patients. Xuanfei Baidu decoction (XFBD) was recommended by the National Health Commission to treat mild and moderate COVID-19 patients and proved to effectively alleviate intestinal symptoms. However, the exact mechanisms remain elusive. PURPOSE: This study aimed at exploring potential mechanisms of XFBD by utilizing a mouse model of dextran sulfate sodium (DSS)-induced acute experimental colitis, mimicking the disease conditions of intestinal microecological disorders. METHODS: The network pharmacology approach was employed to identify the potential targets and pathways of XFBD on the intestinal disorders. Mice with DSS-induced intestinal disorders were utilized to evaluate the protective effect of XFBD in vivo, including body weight, disease activity index (DAI) score, colon length, spleen weight, and serum tumor necrosis factor-α (TNF-α) level. Colon tissues were used to perform hematoxylin-eosin (H&E) staining, western blot analysis, and transcriptome sequencing. Macrophages, neutrophils and the proportions of T helper cell (Th) 1 and Th2 cells were measured by flow cytometry. Intestinal contents were collected for 16S rRNA gene sequencing. RESULTS: Network pharmacology analysis indicated that XFBD inhibited the progression of COVID-19-related intestinal diseases by repressing inflammation. In mice with DSS-induced intestinal inflammation, XFBD treatment significantly reduced weight loss, the spleen index, the disease activity index, TNF-α levels, and colonic tissue damage, and prevented colon shortening. Transcriptomics and flow cytometry results suggested that XFBD remodeled intestinal immunity by downregulating the Th1/Th2 ratio. Western blot analysis showed that XFBD exerted its anti-inflammatory effects by blocking the nuclear factor-κB (NF-κB) signaling pathway. Indicator analysis of microbiota showed that 75 operational taxonomic units (OTUs) were affected after XFBD administration. Among them, Akkermansia, Muribaculaceae, Lachnospiraceae, and Enterorhabdus were simultaneously negatively correlated with intestinal disorders' parameters, and Bacteroides, Escherichia-Shigella, Eubacterium nodatum,Turicibacter, and Clostridium sensu stricto 1, showed positive correlations with intestinal disorders' parameters. CONCLUSIONS: Our data indicate that XFBD treatment attenuated intestinal disorders associated with inhibiting inflammation, remodeling of intestinal immunity, and improving intestinal flora. These findings provide a scientific basis for the clinical use of XFBD and offer a potential therapeutic approach for the treatment of COVID-19 patients with intestinal symptoms.


Subject(s)
COVID-19 Drug Treatment , Colitis, Ulcerative , Colitis , Drugs, Chinese Herbal , Gastrointestinal Microbiome , T-Lymphocytes, Regulatory/immunology , Animals , Colitis/chemically induced , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Colon/pathology , Dextran Sulfate/adverse effects , Disease Models, Animal , Drugs, Chinese Herbal/therapeutic use , Humans , Inflammation/drug therapy , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , RNA, Ribosomal, 16S , Tumor Necrosis Factor-alpha/metabolism
3.
Viruses ; 14(4)2022 04 15.
Article in English | MEDLINE | ID: covidwho-1792418

ABSTRACT

Lamellarin α 20-sulfate is a cell-impenetrable marine alkaloid that can suppress infection that is mediated by the envelope glycoprotein of human immunodeficiency virus type 1. We explored the antiviral action and mechanisms of this alkaloid against emerging enveloped RNA viruses that use endocytosis for infection. The alkaloid inhibited the infection of retroviral vectors that had been pseudotyped with the envelope glycoprotein of Ebola virus and SARS-CoV-2. The antiviral effects of lamellarin were independent of the retrovirus Gag-Pol proteins. Interestingly, although heparin and dextran sulfate suppressed the cell attachment of vector particles, lamellarin did not. In silico structural analyses of the trimeric glycoprotein of the Ebola virus disclosed that the principal lamellarin-binding site is confined to a previously unappreciated cavity near the NPC1-binding site and fusion loop, whereas those for heparin and dextran sulfate were dispersed across the attachment and fusion subunits of the glycoproteins. Notably, lamellarin binding to this cavity was augmented under conditions where the pH was 5.0. These results suggest that the final action of the alkaloid against Ebola virus is specific to events following endocytosis, possibly during conformational glycoprotein changes in the acidic environment of endosomes. Our findings highlight the unique biological and physicochemical features of lamellarin α 20-sulfate and should lead to the further use of broadly reactive antivirals to explore the structural mechanisms of virus replication.


Subject(s)
Alkaloids , COVID-19 Drug Treatment , Ebolavirus , Hemorrhagic Fever, Ebola , Alkaloids/pharmacology , Antiviral Agents/chemistry , Dextran Sulfate , Ebolavirus/metabolism , Glycoproteins , Hemorrhagic Fever, Ebola/drug therapy , Heparin/pharmacology , Humans , SARS-CoV-2 , Virus Internalization
4.
Mol Med Rep ; 25(4)2022 04.
Article in English | MEDLINE | ID: covidwho-1753714

ABSTRACT

Aberrant TGF­ß/Smad7 signaling has been reported to be an important mechanism underlying the pathogenesis of ulcerative colitis. Therefore, the present study aimed to investigate the effects of a number of potential anti­colitis agents on intestinal epithelial permeability and the TGF­ß/Smad7 signaling pathway in an experimental model of colitis. A mouse model of colitis was first established before anti­TNF­α and 5­aminosalicyclic acid (5­ASA) were administered intraperitoneally and orally, respectively. Myeloperoxidase (MPO) activity, histological index (HI) of the colon and the disease activity index (DAI) scores were then detected in each mouse. Transmission electron microscopy (TEM), immunohistochemical and functional tests, including Evans blue (EB) and FITC­dextran (FD­4) staining, were used to evaluate intestinal mucosal permeability. The expression of epithelial phenotype markers E­cadherin, occludin, zona occludens (ZO­1), TGF­ß and Smad7 were measured. In addition, epithelial myosin light chain kinase (MLCK) expression and activity were measured. Anti­TNF­α and 5­ASA treatments was both found to effectively reduce the DAI score and HI, whilst decreasing colonic MPO activity, plasma levels of FD­4 and EB permeation of the intestine. Furthermore, anti­TNF­α and 5­ASA treatments decreased MLCK expression and activity, reduced the expression of Smad7 in the small intestine epithelium, but increased the expression of TGF­ß. In mice with colitis, TEM revealed partial epithelial injury in the ileum, where the number of intercellular tight junctions and the expression levels of E­cadherin, ZO­1 and occludin were decreased, all of which were alleviated by anti­TNF­α and 5­ASA treatment. In conclusion, anti­TNF­α and 5­ASA both exerted protective effects on intestinal epithelial permeability in an experimental mouse model of colitis. The underlying mechanism may be mediated at least in part by the increase in TGF­ß expression and/or the reduction in Smad7 expression, which can inhibit epithelial MLCK activity and in turn reduce mucosal permeability during the pathogenesis of ulcerative colitis.


Subject(s)
Colitis, Ulcerative/metabolism , Smad7 Protein/genetics , Smad7 Protein/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Animals , Cadherins/metabolism , Colitis, Ulcerative/chemically induced , Colon/pathology , Dextran Sulfate/toxicity , Disease Models, Animal , Female , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/ultrastructure , Male , Mesalamine/administration & dosage , Mice, Inbred C57BL , Myosin-Light-Chain Kinase/metabolism , Occludin/metabolism , Peroxidase/drug effects , Severity of Illness Index , Signal Transduction/drug effects , Tight Junctions/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Zonula Occludens-1 Protein/metabolism
5.
FASEB J ; 35(9): e21870, 2021 09.
Article in English | MEDLINE | ID: covidwho-1373669

ABSTRACT

COVID-19 is often characterized by dysregulated inflammatory and immune responses. It has been shown that the Traditional Chinese Medicine formulation Qing-Fei-Pai-Du decoction (QFPDD) is effective in the treatment of the disease, especially for patients in the early stage. Our network pharmacology analyses indicated that many inflammation and immune-related molecules were the targets of the active components of QFPDD, which propelled us to examine the effects of the decoction on inflammation. We found in the present study that QFPDD effectively alleviated dextran sulfate sodium-induced intestinal inflammation in mice. It inhibited the production of pro-inflammatory cytokines IL-6 and TNFα, and promoted the expression of anti-inflammatory cytokine IL-10 by macrophagic cells. Further investigations found that QFPDD and one of its active components wogonoside markedly reduced LPS-stimulated phosphorylation of transcription factor ATF2, an important regulator of multiple cytokines expression. Our data revealed that both QFPDD and wogonoside decreased the half-life of ATF2 and promoted its proteasomal degradation. Of note, QFPDD and wogonoside down-regulated deubiquitinating enzyme USP14 along with inducing ATF2 degradation. Inhibition of USP14 with the small molecular inhibitor IU1 also led to the decrease of ATF2 in the cells, indicating that QFPDD and wogonoside may act through regulating USP14 to promote ATF2 degradation. To further assess the importance of ubiquitination in regulating ATF2, we generated mice that were intestinal-specific KLHL5 deficiency, a CUL3-interacting protein participating in substrate recognition of E3s. In these mice, QFPDD mitigated inflammatory reaction in the spleen, but not intestinal inflammation, suggesting CUL3-KLHL5 may function as an E3 for ATF2 degradation.


Subject(s)
Activating Transcription Factor 2/metabolism , Down-Regulation/drug effects , Drugs, Chinese Herbal/pharmacology , Flavanones/pharmacology , Glucosides/pharmacology , Inflammation/drug therapy , Proteolysis/drug effects , Ubiquitin Thiolesterase/deficiency , Animals , Cell Line , Colitis/chemically induced , Colitis/drug therapy , Cullin Proteins/metabolism , Cytokines/metabolism , Dextran Sulfate/pharmacology , Dextran Sulfate/therapeutic use , Drugs, Chinese Herbal/therapeutic use , Flavanones/therapeutic use , Glucosides/therapeutic use , Inflammation/chemically induced , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Phosphorylation/drug effects , Proteasome Endopeptidase Complex/drug effects , Proteasome Endopeptidase Complex/metabolism , Pyrroles/pharmacology , Pyrrolidines/pharmacology , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL